Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Brain Circ ; 10(1): 35-41, 2024.
Article in English | MEDLINE | ID: mdl-38655435

ABSTRACT

Acute ischemic stroke (AIS) condition assessment and clinical prognosis are significantly influenced by the compensatory state of cerebral collateral circulation. A standard clinical test known as single-phase computed tomography angiography (sCTA) is useful for quickly and accurately assessing the creation or opening of cerebral collateral circulation, which is crucial for the diagnosis and treatment of AIS. To improve the clinical application of sCTA in the clinical assessment of collateral circulation, we examine the present use of sCTA in AIS in this work.

2.
J Econ Entomol ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517276

ABSTRACT

Sex pheromone analogs have high structural similarity to sex pheromone components. They also play a role in studying many agricultural pests. In our study, (Z, Z, Z)-3,6,9-nonadecadiene (Z3Z6Z9-19:Hy) was successfully synthesized, which is an analogue to 1 of 2 sex pheromone components of Ectropis grisescens Warren (Z, Z, Z)-3,6,9-octadecatriene (Z3Z6Z9-18:Hy), and it showed potential inhibition in experiments. In the electroantennogram test, Z3Z6Z9-19:Hy showed a dose-dependent response, and only measured half the response of Z3Z9-6,7-epo-18:Hy. However, the compound significantly reduced positive response of E. grisescens males by up to 70% in the Y-tube olfactometer. Furthermore, in the wind tunnel, it significantly inhibited all types of behavioral responses. The percentage of moths contacting the pheromone odor source was reduced even at the lowest dose tested. In silico study afterward, molecular docking results showed affinity between Z3Z6Z9-19:Hy and sensory neuron membrane protein 1. Our study revealed the potential of Z3Z6Z9-19:Hy as a sex pheromone inhibitor, which would provide new tools for monitoring and mating disruption of E. grisescens.

3.
Food Chem ; 445: 138620, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38382249

ABSTRACT

Gabaron green tea (GAGT) has unique flavor and health benefits through the special anaerobic treatment. However, how this composite processing affects the aroma formation of GAGT and the regulatory mechanism was rarely reported. This study used nontargeted metabolomics and molecular sensory science to overlay screen differential metabolites and key aroma contributors. The potential regulatory mechanism of anaerobic treatment on the aroma formation of GAGT was investigated by transcriptomics and correlation analyses. Five volatiles: benzeneacetaldehyde, nonanal, geraniol, linalool, and linalool oxide III, were screened as target metabolites. Through the transcriptional-level differential genes screening and analysis, some CsERF transcription factors in the ethylene signaling pathway were proposed might participate the response to the anaerobic treatment. They might regulate the expression of related genes in the metabolic pathway of the target metabolites thus affecting the GAGT flavor. The findings of this study provide novel information on the flavor and its formation of GAGT.


Subject(s)
Camellia sinensis , Volatile Organic Compounds , Tea/metabolism , Camellia sinensis/genetics , Camellia sinensis/metabolism , Multiomics , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry , Odorants/analysis
4.
Microbiol Spectr ; 11(6): e0100923, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37921460

ABSTRACT

IMPORTANCE: Host-associated microbial communities play an important role in the fitness of insect hosts. However, the factors shaping microbial communities in wild populations, including environmental factors and interactions among microbial species, remain largely unknown. The tea green leafhopper has a wide geographical distribution and is highly adaptable, providing a suitable model for studying the effect of ecological drivers on microbiomes. This is the first large-scale culture-independent study investigating the microbial communities of M. onukii sampled from different locations. Altitude as a key environmental factor may have shaped microbial communities of M. onukii by affecting the relative abundance of endosymbionts, especially Wolbachia. The results of this study, therefore, offer not only an in-depth view of the microbial diversity of this species but also an insight into the influence of environmental factors.


Subject(s)
Hemiptera , Animals , Altitude , Tea
5.
Microorganisms ; 11(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37764032

ABSTRACT

Agriophara rhombata is a tea leaf moth that is considered one of the most destructive pests of Camellia sinensis (tea plant). Several recent studies have shown that many insects acquire part of the microbiome from their host and soil, but the pattern and diversity of their microbiome have not been clearly demonstrated. The present study aimed to investigate the bacterial and fungal communities present in the rhizospheric soil and leaf of tea plant compared to the gut of tea moth at different developmental stages (larvae, pupae, adult female and male) using Illumina MiSeq technology. Alpha diversity (Shannon index) showed higher (p < 0.05) bacterial and fungal diversity in soil samples than in leaf and tea moth larvae, pupae, and adult gut samples. However, during different developmental stages of tea moth, bacterial and fungal diversity did not differ (p > 0.05) between larvae, pupae, female, and male guts. Beta diversity also revealed more distinct bacterial and fungal communities in soil and leaf samples compared with tea moth gut samples, which had a more similar microbiome. Furthermore, Proteobacteria, Firmicutes, and Tenericutes were detected as the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Mortierellomycota were the most abundant fungal phyla among all groups, but their relative abundance was comparatively higher (p < 0.05) in soil and leaf samples compared to tea moth gut samples. Similarly, Klebsiella, Streptophyta, and Enterococcus were the top three bacterial genera, while Candida, Aureobasidium, and Strelitziana were the top three fungal genera, and their relative abundance varied significantly (p < 0.05) among all groups. The KEGG analysis also revealed significantly higher (p < 0.5) enrichment of the functional pathways of bacterial communities in soil and leaf samples than in tea moth gut samples. Our study concluded that the bacterial and fungal communities of soil and tea leaves were more diverse and were significantly different from the tea moth gut microbiome at different developmental stages. Our findings contribute to our understanding of the gut microbiota of the tea moth and its potential application in the development of pest management techniques.

6.
Food Sci Nutr ; 10(10): 3475-3484, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36249963

ABSTRACT

Fenugreek seeds (Trigonella foenum-graecum L.), one kind of traditional Chinese medicine, are reported to be of great potential as a new alternative in terms of their bioactive components. In our present study, an ultrasonic-assisted method was applied in the extraction of antioxidative components from fenugreek seeds. Four factors: ethanol concentration, liquid-solid ratio, sonication time, and sonication power were selected and multiple responses were studied using the response surface methodology (RSM). The effects of factors along with the correlation between all responses (flavonoids content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, OH- assay) were studied. The regression model indicated that all four factors are of significant effect on all responses. The model predicted that the ethanol concentration of 72%, solvent-to-material ratio of 35 ml/g, ultrasonic time of 41 min, and 500 W of power would provide a flavonoid yield of 9.10 mg/g, DPPH clearance of 80.33%, and OH- clearance of 24.28%, respectively. The confirmation test showed the closeness of the predicted results with those of experimental values. And AB-8 resin was successfully used to purify the fenuellus hulusi seed extract, and the flavonoid concentration of 78.14% was obtained. Six flavonoids (Swertisin, Puerarin apioside, Jasminoside B, Astragalin, Apigenin-7-O-beta-D-glucoside, and Apiin) were successfully identified by the liquid chromatography-mass spectrometry (LC-MS) analysis.

7.
Front Microbiol ; 13: 785415, 2022.
Article in English | MEDLINE | ID: mdl-35479626

ABSTRACT

The gut bacteria of insects play an important role in their nutrition, maintenance, and ecological adaption. Ectropis grisescens is the most important leaf-feeding pest in tea gardens in China. In order to explore whether E. grisescens adaptation under starvation stress is related to its gut bacteria, we used a culture-independent method to compare the composition and diversity of their gut bacteria under starvation treatment. The results revealed no significant changes in core gut bacteria composition and diversity within 24 h of starvation. However, non-core gut bacterial Bacillus increased significantly under starvation conditions. B. cereus strain EG-Q3 isolated from the gut of E. grisescens in carbon source-selected medium showed the ability to degrade fat bodies from E. grisescens in vitro and in vivo. Moreover, the fat-lowering ratio of E. grisescens fed with B. cereus strain EG-Q3 (6.76 ± 1.281%) was significantly higher than that of the control group (3.96 ± 0.801%, t = 4.15, df = 8, p < 0.01) after starvation for 4 h. These findings suggest that non-core gut bacterial B. cereus strain EG-Q3 contributes to host adaptation to starvation. Together, this research provides evidence that E. grisescens may benefit from non-core gut bacteria under starvation conditions.

8.
Insects ; 13(3)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35323523

ABSTRACT

Ectropis obliqua is a destructive masticatory pest in China's tea gardens. Beauveria bassiana as microbial insecticides can effectively control E. obliqua larvae; however, the immune response of this insect infected by B. bassiana are largely unknown. Here, after isolating a highly virulent strain of B. bassiana from E. obliqua, the changes in gene expression among different tissues, including hemocytes and fat bodies, of E. obliqua larvae infected by the entomopathogen were investigated using transcriptome sequencing. A total of 5877 co-expressed differentially expressed genes (DEGs) were identified in hemocytes and fat bodies, of which 5826 were up-regulated in hemocytes and 5784 were up-regulated in fat bodies. We identified 249 immunity-related genes, including pattern recognition receptors, immune effectors, signal modulators, and members of immune pathways. A quantitative real-time PCR analysis confirmed that several pattern recognition receptors were upregulated in hemocytes and fat bodies; however, others were downregulated. The investigated immune effectors (ATT and PPO-1) were suppressed. The results showed that there were tissue differences in the expression of immune genes. This study provides a large number of immunity-related gene sequences from E. obliqua after being infected by B. bassiana, furthering the understanding of the molecular mechanisms of E. obliqua defenses against B. bassiana.

9.
Front Microbiol ; 12: 694466, 2021.
Article in English | MEDLINE | ID: mdl-34349742

ABSTRACT

Members of the Wolbachia genus manipulate insect-host reproduction and are the most abundant bacterial endosymbionts of insects. The tea Geometrid moth Ectropis grisescens (Warren) (Lepidoptera: Geometridae) is the most devastating insect pest of tea plants [Camellia sinensis (L.) O. Kuntze] in China. However, limited data on the diversity, typing, or phenotypes of Wolbachia in E. grisescens are available. Here, we used a culture-independent method to compare the gut bacteria of E. grisescens and other tea Geometridae moths. The results showed that the composition of core gut bacteria in larvae of the three Geometridae moth species was similar, except for the presence of Wolbachia. Moreover, Wolbachia was also present in adult female E. grisescens samples. A Wolbachia strain was isolated from E. grisescens and designated as wGri. Comparative analyses showed that this strain shared multilocus sequence types and Wolbachia surface protein hypervariable region profiles with cytoplasmic incompatibility (CI)-inducing strains in supergroup B; however, the wGri-associated phenotypes were undetermined. A reciprocal cross analysis showed that Wolbachia-uninfected females mated with infected males resulted in 100% embryo mortality (0% eggs hatched per female). Eggs produced by mating between uninfected males and infected females hatched normally. These findings indicated that wGri induces strong unidirectional CI in E. grisescens. Additionally, compared with uninfected females, Wolbachia-infected females produced approximately 30-40% more eggs. Together, these results show that this Wolbachia strain induces reproductive CI in E. grisescens and enhances the fecundity of its female host. We also demonstrated that wGri potential influences reproductive communication between E. grisescens and Ectropis obliqua through CI.

10.
Trials ; 22(1): 53, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33436053

ABSTRACT

BACKGROUND: Upper limb and hand motor dysfunction is one of the challenges in rehabilitation after cerebral ischemic stroke (CIS), and the clinical efficacy of rehabilitation needs to be improved. This study aims to combine Jin's three-needle acupuncture (JTN) therapy with mirror therapy (MT) for hemiplegia after CIS, objectively evaluate the clinical effects and safety of JTN to treat upper limb dysfunction, and use functional magnetic resonance imaging (fMRI) of the brain to investigate the central mechanisms of the effects, which would provide a powerful evidence-based medical basis for further supporting the application of JTN combined with MT. METHODS/DESIGN: This trial will be a single-blind, randomized controlled study. Patients who meet the study criteria will be recruited and randomly assigned to either the combined treatment group (JTN+MT) or the JTN group. Both interventions will be conducted for 6 days per week and last for 4 weeks. The primary outcome will be the effective rate based on the Fugl-Meyer Assessment for Upper Extremity (FMA-UE). Other outcome measures will include scores on the motor assessment scale (MAS), action research arm test (ARAT), activities of daily living (ADL) scale, and fMRI analyses. For safety evaluation, adverse events will be observed and recorded. DISCUSSION: This study may help to identify the efficacy and safety of acupuncture combined with MT for upper limb dysfunction after CIS and explore the central mechanisms with brain fMRI. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR-IOR-17012174 . Registered on 5 April 2017.


Subject(s)
Acupuncture Therapy , Brain Ischemia , Ischemic Stroke , Stroke Rehabilitation , Stroke , Activities of Daily Living , Acupuncture Therapy/adverse effects , Brain/diagnostic imaging , Brain Ischemia/diagnostic imaging , Brain Ischemia/therapy , Humans , Magnetic Resonance Imaging , Randomized Controlled Trials as Topic , Single-Blind Method , Stroke/diagnostic imaging , Stroke/therapy , Treatment Outcome , Upper Extremity
11.
Acta Otolaryngol ; 141(3): 273-278, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33428490

ABSTRACT

BACKGROUND: ABO blood group status may be a risk factor for some diseases, including hearing loss. Individuals with blood group O show a higher prevalence of hearing loss after industrial noise exposure. Group O individuals with normal hearing show reduced amplitudes in otoacoustic emission recordings. Whether blood group status affects auditory brainstem responses (ABR), which reflect cochlear hair cell and auditory nerve bioelectric activity, is unclear. AIMS/OBJECTIVES: To compare cochlear and peripheral neural function across ABO blood groups by recording cochlear microphonic (CM) and wave I ABR responses. MATERIAL AND METHODS: Sixty normal-hearing young adults, with 15 participants from each blood group, completed 70 dB nHL click stimulus ABR measures. CM amplitude, wave I amplitude and wave I latency data were obtained for both ears. One-way ANOVA tests compared results across the ABO groups. RESULTS: A statistically significant difference for wave I peak-to-peak amplitudes across the four groups was found. Post-hoc comparisons revealed group O had significantly reduced wave I amplitudes compared to group A participants. A consistent trend of reduced CM amplitudes and prolonged wave I latencies was shown in group O participants. CONCLUSIONS AND SIGNIFICANCE: Emerging evidence exists that ABO blood group status may influence auditory function.


Subject(s)
ABO Blood-Group System/physiology , Cochlea/physiology , Cochlear Nerve/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing/physiology , Adult , Audiometry, Pure-Tone , Auditory Threshold/physiology , Female , Humans , Male , Young Adult
12.
J Phys Chem B ; 125(10): 2636-2643, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33491449

ABSTRACT

Phosphorene is a novel two-dimensional nanomaterial with a puckered surface morphology, which has broad potential application prospects in the fields of biology and medicine. Phosphorene nanosheets are easily oxidized and form phosphorene oxide (PO) in an aerobic environment, whose biological effect remains unknown. In this paper, using large-scale molecular dynamics simulations, we show that the PO nanosheets can penetrate into and destructively extract large amounts of phospholipids from the lipid membrane. The PO nanosheets with a higher oxidation concentration have less extraction of phospholipids, while its oxidation mode has no effect on the extraction of phospholipids. Moreover, inserting PO nanosheets into the lipid membrane can enhance the diffusion of phospholipids on the membrane. These findings can shed light on understanding/designing the membrane-nanomaterial interactions.

13.
J Sci Food Agric ; 101(2): 379-387, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32623727

ABSTRACT

Tea is the one of the most popular non-alcoholic caffeinated beverages in the world. Tea is produced from the tea plant (Camellia sinensis (L.) O. Kuntze), which is known to accumulate fluoride. This article systematically analyzes the literature concerning fluoride absorption, transportation and fluoride tolerance mechanisms in tea plants. Fluoride bioavailability and exposure levels in tea infusions are also reviewed. The circulation of fluoride within the tea plantation ecosystems is in a positive equilibrium, with greater amounts of fluoride introduced to tea orchards than removed. Water extractable fluoride and magnesium chloride (MgCl2 ) extractable fluoride in plantation soil are the main sources of absorption by tea plant root via active trans-membrane transport and anion channels. Most fluoride is readily transported through the xylem as F- /F-Al complexes to leaf cell walls and vacuole. The findings indicate that tea plants employ cell wall accumulation, vacuole compartmentalization, and F-Al complexes to co-detoxify fluoride and aluminum, a possible tolerance mechanism through which tea tolerates higher levels of fluoride than most plants. Furthermore, dietary and endogenous factors influence fluoride bioavailability and should be considered when exposure levels of fluoride in commercially available dried tea leaves are interpreted. The relevant current challenges and future perspectives are also discussed. © 2020 Society of Chemical Industry.


Subject(s)
Camellia sinensis/chemistry , Fluorides/analysis , Fluorides/metabolism , Aluminum/analysis , Aluminum/metabolism , Biological Availability , Biological Transport , Camellia sinensis/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Dietary Exposure/adverse effects , Dietary Exposure/analysis , Humans , Plant Leaves/chemistry , Plant Leaves/metabolism , Risk Assessment , Soil/chemistry , Tea/chemistry
14.
BMC Microbiol ; 20(1): 270, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859152

ABSTRACT

BACKGROUND: The experimental materials were a 60-year-old tea tree (Camellia sinensis cv. Shu Cha Zao; SCZ) (the mother plant) and 1-year-old and 20-year-old plants of SCZ that originated as mother plant cuttings. The aim of this study was to use high-throughput sequencing to study the spatial and dynamic distribution of endophytic fungi in different leaf niches (upper leaves, middle leaves, lower leaves) and rhizosphere soil on tea plants of different ages in the same garden. RESULTS: Ascomycota (83.77%), Basidiomycota (11.71%), and Zygomycota (3.45%) were the dominant fungal phyla in all samples. Cladosporium (12.73%), Zymoseptoria (9.18%), and Strelitziana (13.11%) were the dominant genera in the leaf. Alpha diversity analysis revealed that endophytic communities in leaves differed from those in rhizosphere soil and different leaf niches had similar fungal diversity. Shannon's indices and NMDS analysis indicated significant differences in fungal diversity and composition among the SCZ trees of different ages (p ≤ 0.01). The abundance of Cladosporium and Zymoseptoria decreased with increasing SCZ age, whereas the abundance of Strelitziana increased. CONCLUSIONS: The results illustrate variation in endophytic fungi among different niches on tea plants of different ages. The distribution of endophytic fungi in leaves of C. sinensis shows spatiotemporal variation.


Subject(s)
Camellia sinensis/microbiology , Endophytes/physiology , Fungi , Biodiversity , Camellia sinensis/growth & development , Endophytes/genetics , Fungi/genetics , High-Throughput Nucleotide Sequencing , Plant Leaves/microbiology , Rhizosphere , Soil Microbiology , Spatio-Temporal Analysis
16.
Arch Biochem Biophys ; 683: 108301, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32057759

ABSTRACT

Leaf herbivory on tea plants (Camellia sinensis) by tea geometrids (Ectropis oblique) can cause severe yield loss and quality damage for tea. In previous work, we discovered that leaf herbivory triggered systemic carbon depletion in undamaged roots to enhance resource investment for local defense induced in damaged leaves. Here, we investigated the dynamics of amino acids in the local and systemic responses and the roles of nitrogen resource reallocation for the inducible defense in tea plants in response to leaf herbivory. The comparative analysis of the dynamics of flavonoids, caffeine, theanine and basic amino acids at metabolic and transcriptome levels revealed that leaf herbivory triggered the differential reconfiguration of these amino acid-derived defensive metabolites and nitrogenous primary metabolism between the local and systemic responses. The tight association of the metabolism and reallocation of amino acids with the activation of defensive secondary metabolism indicated that the systemic nitrogen reallocation played a potentially important role for the resource investment in tea plant resistance against leaf herbivory. This study provided an extended understanding of the role of systemic nitrogen reallocation for the interaction of tea plants and geometrids and the root-mediated resource-based resistance strategy employed by tea plants in response to leaf herbivory.


Subject(s)
Amino Acids/metabolism , Camellia sinensis/metabolism , Herbivory , Moths , Plant Leaves/metabolism , Amino Acids/chemistry , Animals , Caffeine/chemistry , Flavonoids/chemistry , Gene Expression Regulation, Plant , Glutamates/chemistry , Least-Squares Analysis , Nitrogen/chemistry , Nitrogen/metabolism , Plant Proteins/metabolism , Principal Component Analysis , Transcriptome , Up-Regulation
17.
Nanoscale ; 12(4): 2810-2819, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31961358

ABSTRACT

Recently, phosphorene, a novel two-dimensional nanomaterial with a puckered surface morphology, was shown to exhibit cytotoxicity, but its underlying molecular mechanisms remain unknown. Herein, using large scale molecular dynamics simulations, we show that phosphorene nanosheets can penetrate into and extract large amounts of phospholipids from the cell membranes due to the strong dispersion interaction between phosphorene and lipid molecules, which would reduce cell viability. The extracted phospholipid molecules are aligned along the wrinkle direction of the phosphorene nanosheet because of its unique puckered structure. Our results also reveal that small phosphorene nanosheets penetrate into the cell membrane in a specific direction which is determined by the size and surface topography of phosphorene and the thickness of the membrane. These findings might shed light on understanding phosphorene's cytotoxicity and would be helpful for the future potential biomedical applications of phosphorene, such as biosensors and antibacterial agents.


Subject(s)
Cell Membrane/drug effects , Nanostructures/toxicity , Phosphorus/toxicity , Biosensing Techniques , Cell Membrane/chemistry , Cell Survival/drug effects , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Nanostructures/chemistry , Phospholipids/chemistry , Phosphorus/chemistry , Surface Properties
18.
Environ Entomol ; 48(5): 1173-1177, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31305889

ABSTRACT

Ectropis obliqua Prout is the main pest of the tea plant Camellia sinensis (L.) O. Kuntze in China, affecting an annual area of more than one million acres. (-)-Epigallocatechin-3-gallate (EGCG) is the major catechin in tea leaves. Here, we show that EGCG is highly efficient in increasing the survival rate of E. obliqua larvae. We also compared the gut peroxidase (PO) activity between EGCG-fed and control larvae. EGCG-fed larvae had significantly greater PO activity levels than control larvae. Western blotting validated these results. Gut PO activity levels of larvae fed an artificial diet gradually decreased and disappeared completely by day 5. We hypothesize that the increased survival rate of EGCG-fed larvae was associated with increased PO activity. This research provides evidence that E. obliqua larvae have adapted to, and may even benefit from, secondary compounds found in tea leaves.


Subject(s)
Catechin , Moths , Animals , Catechin/analogs & derivatives , Catechol Oxidase , China , Enzyme Precursors , Tea
19.
Sci Rep ; 9(1): 5021, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30903009

ABSTRACT

Ectropis obliqua Prout (Lepidoptera: Geometridae) is the most devastating insect pest of tea plants in China and infests thousands of hectares of tea plantations in China annually. (-)-Epigallocatechin-3-gallate (EGCG) is a major phenolic compound in tea leaves and has a strong antibacterial function. Here, we show that EGCG can effectively improve the fitness of E. obliqua larvae and present the reason by which EGCG promotes larval fitness. In this study, we compared the fitness difference among Control, Antibiotic and Treatment of larvae. The fitness of larvae treated with EGCG and antibiotic was similar and better than that of control group. We also demonstrated that EGCG treatment could significantly reduce species richness and abundance of gut bacteria in E. obliqua larvae. Hence that we speculate that EGCG promotes larval fitness and is associated with ECGG antimicrobial activity. In short, our study provides evidence of the E. obliqua larvae have adapted to secondary compounds found in tea leaves, and may even benefit from these compounds. Our study also contributes to a greater understanding of the reason involved in plant-insect interactions.


Subject(s)
Bacteria/drug effects , Camellia sinensis/chemistry , Catechin/analogs & derivatives , Digestive System/drug effects , Moths/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/growth & development , Camellia sinensis/parasitology , Catechin/pharmacology , Digestive System/microbiology , Host-Parasite Interactions , Larva/drug effects , Larva/microbiology , Larva/physiology , Moths/microbiology , Moths/physiology , Plant Leaves/chemistry , Plant Leaves/parasitology , Population Density , Pupa/drug effects , Pupa/physiology
20.
Sci Rep ; 7: 46131, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28383067

ABSTRACT

The genus Camellia (C.) contains many species, including C. sinensis, C. assamica, and C. taliensis, C. gymnogyna and C. tachangensis. The polyphenols of C. sinensis and C. assamica are flavan-3-ols monomers and their dimers and trimmers. However, the biosynthesis of procyanidins in Camellia genus remains unclear. In the present study, a comparative chemical analysis of flavan-3-ols, flavan-3-ols glycoside and procyanidins was conducted by high performance liquid chromatography (HPLC) and liquid chromatography diode array detection coupled with triple-quadrupole mass-spectrometry (LC-DAD-QQQ-MS). The results showed that C. tachangensis had a significant higher contents of (-)-epicatechin (EC) and (-)-epigallocatechin (EGC) compared with C. sinensis (p < 0.001). By contrast, higher levels of galloylated catechins were detected in C. sinensis. LC-DAD-MS/MS indicated that the main secondary metabolites of C. tachangensis were non-galloylated catechins, procyanidin dimers and trimers. Furthermore, (-)-epicatechin glucose (EC-glucose) and (-)-epigallocatechin glucose (EGC-glucose) were also abundant in C. tachangensis. A correlation analysis of EC-glucose and procyanidins dimers was conducted in five Camellia species. The levels of EC-glucose were closely related to the procyanidin dimers content. Thus, it was suggested that EC-glucose might be an important substrate for the biosynthesis of procyanidins.


Subject(s)
Biflavonoids/biosynthesis , Biosynthetic Pathways , Camellia/chemistry , Catechin/biosynthesis , Proanthocyanidins/biosynthesis , Tandem Mass Spectrometry , Biflavonoids/chemistry , Biosynthetic Pathways/genetics , Camellia/genetics , Catechin/chemistry , Chromatography, High Pressure Liquid , Gene Expression Regulation, Plant , Glucose/analysis , Proanthocyanidins/chemistry , Real-Time Polymerase Chain Reaction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...